Data Mining for the Americas: Biowebs

January 29, 2003 AMPATH: Pathway of the Americas

Robert Grossman
University of Illinois at Chicago (grossman at uic.edu)
Open Data (rlg at opendata.biz)

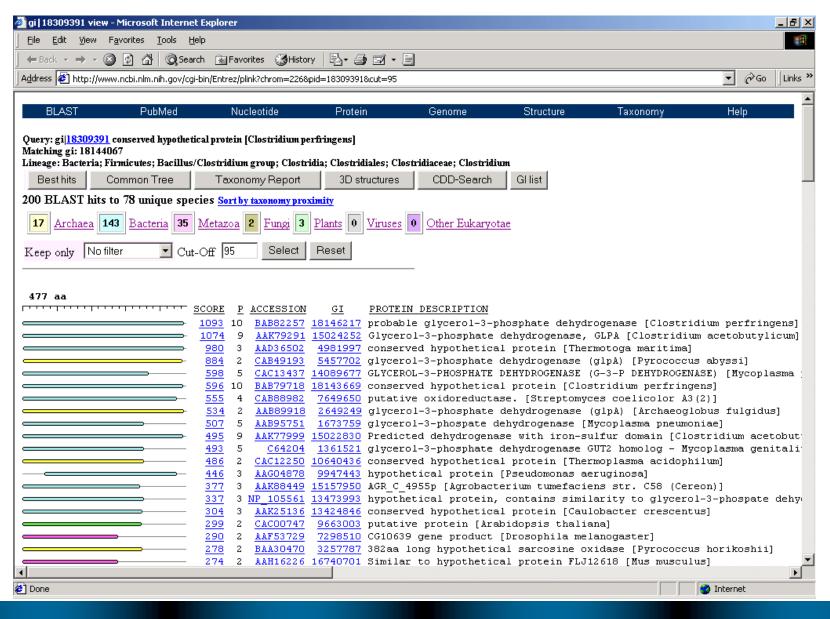
Part 1. Three Trends

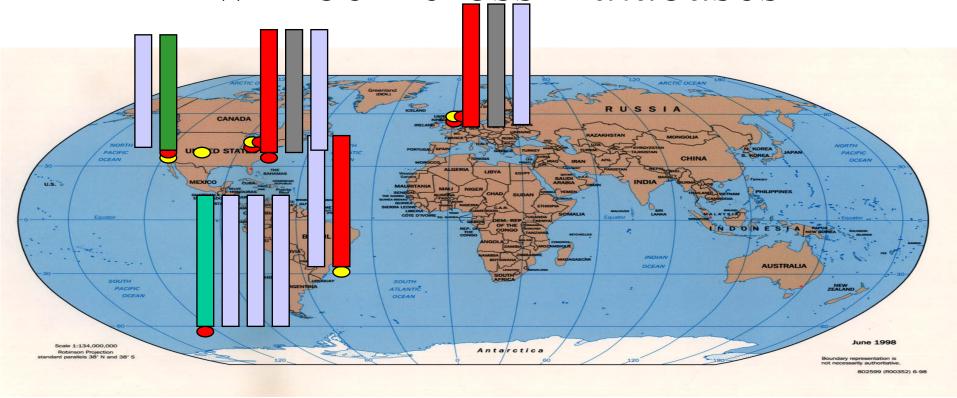
Three trends driving the emergence of biowebs.

Trend 1. Proliferation of Biological **Databases**

FlyBase

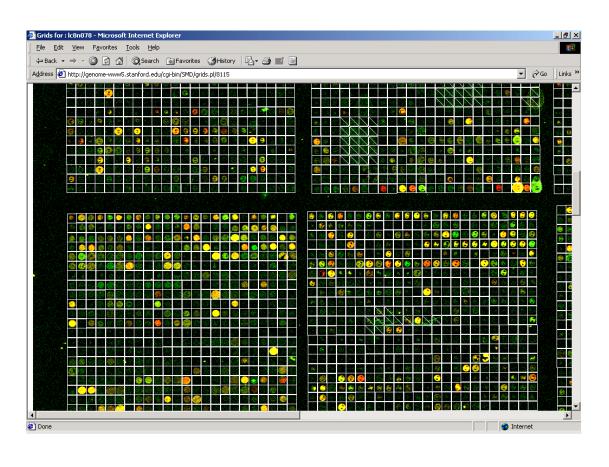
from dozens to hundreds of databases



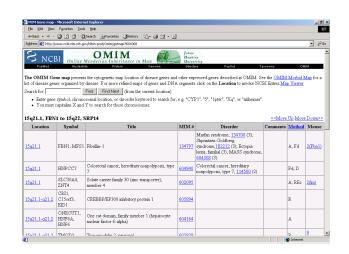


WormBase

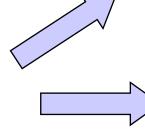
...Usually in the Wrong Format

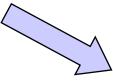


Trend 2: More and More Discoveries will be Across Databases


□ Pearson's Law: The usefulness of a column of data varies as the square of the number of columns it is compared to.

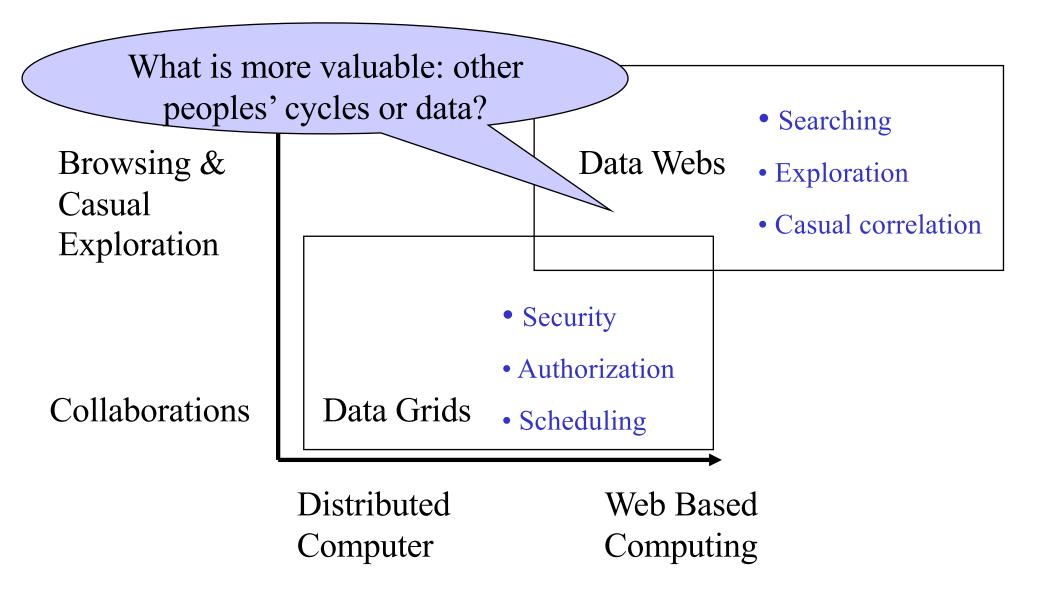
Example: Microarray Data & Clinical Data




<publication>
!Citation=Alizadeh AA
et al.(2000) Nature
403:503-11
!Title=Distinct types of
diffuse large B-cell
lymphoma (DLBCL)
identified by gene
expression profiling.
!PubMedID=10676951

Trend 3. Near a Trifurcation Point

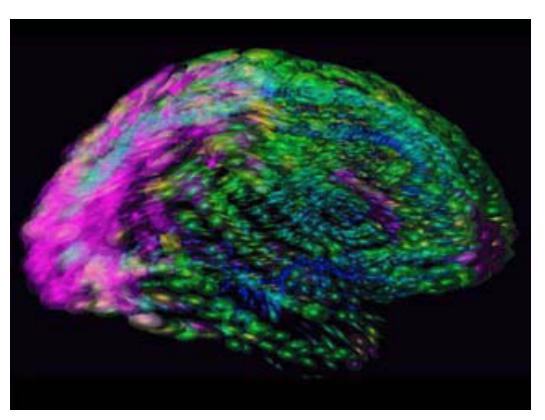
Biological Databases


2003-2008

Biowebs – remote data analysis and distributed mining

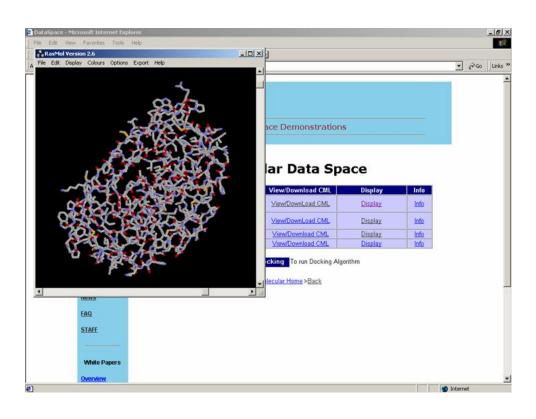
Biogrids – transparent high end computing

Biological semantic webs – sem. webs for biological knowledge

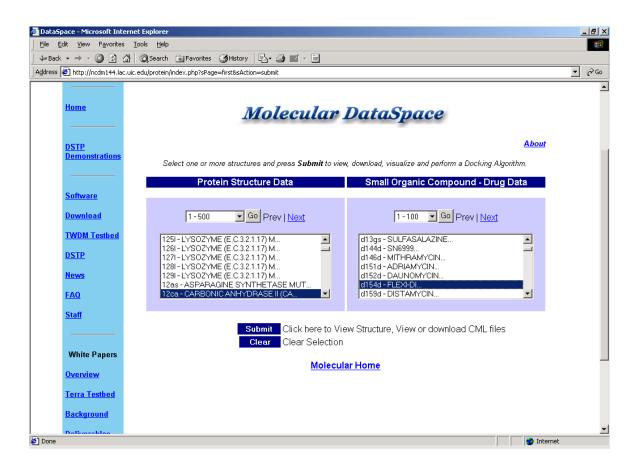

Data Grids vs. Data Webs

Part 2. Examples

Biogrids, biowebs, and all that.

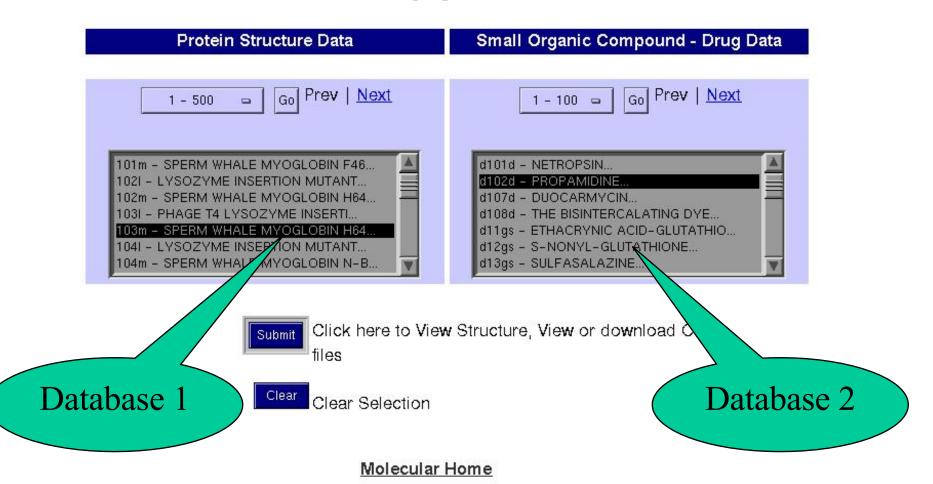

Example 1. BIRN

□ NIH Sponsored project developing collaborative infrastructure for studying brains in humans and animals


Example 2. OptIPuter

Photonic DataSpace

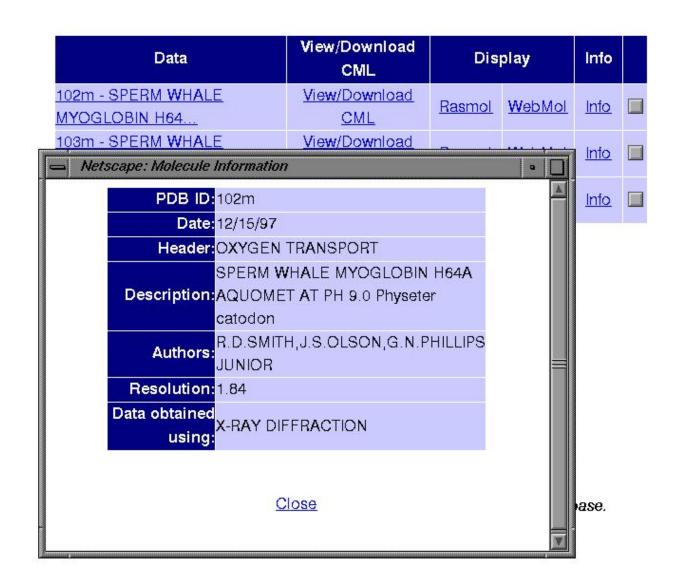
- ☐ Data intensive computing over photonic networks
- □ Replication of the protein data bank (PDB).
- ☐ Linked with a chemical library of small organics molecules.
- ☐ Distributed docking algorithms


Example 3. Molecular DataSpace

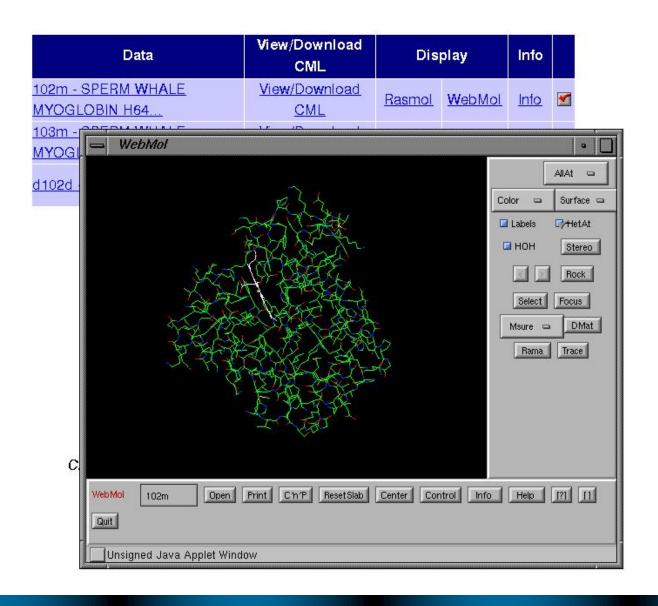
- ☐ How do you interactively explore other people's data?
- □ How do you overlay other peoples data on your own?
- □ How do you do distributed data mining?

Simplify the Integration of Two or More Distributed Data Sets

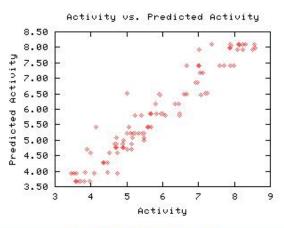
Select one or more structures and press **Submit** to view, download, visualize and perform a Docking Algorithm.


Easy to Overlay External, Third Party Data with Local Data

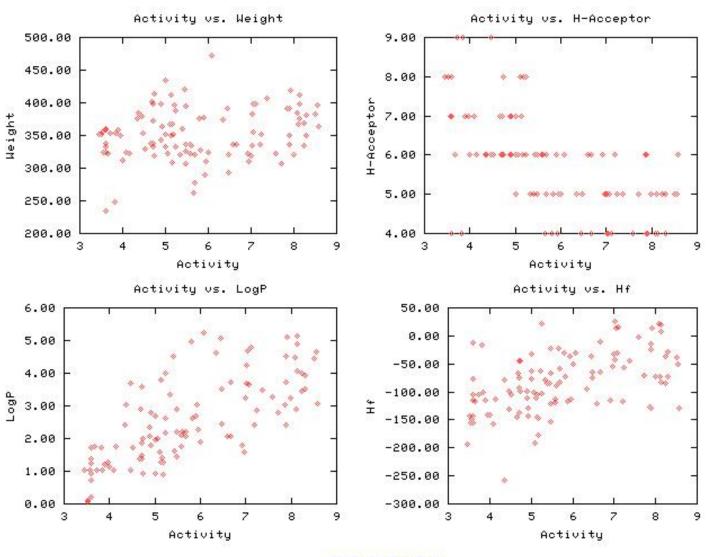
NSCID	Weight H-Donors	H-Acceptor	<u>Formula</u>	LogP	SmileString	RecpS	POSorNEG	Hf	NCSP3-R22	NS-R13	NOH-R3	Activity
d99	364.415 2	7	C17H20N2O58	1.807	CC(C)C(=0)c2c(Sc1ccccc1)n(COCC0)c(=0)[nH]c2=0	1.6776	-1.1048	-142.56	9	0	1	4.92
d98	323,366 4	7	C14H17N3O4S	0.732	Cc2c(Sc1cccc(N)c1)n(COCCO)c(=0)[nH]c2=0	1.5957	-1.1131	-105.18	1	27	1	3.6
d97	394.444 2	6	C21H18N2O4S	2.224	0=c2[nH]c(=0)n(COCCO)c(Sc1ccccc1)c2C#Cc3ccccc3	1.8155	-1.0701	-23.39	0	0	1	5.47
d96	318.347 2	6	C15H14N2O4S	0.923	C#Cc2c(Sc1ccccc1)n(COCCO)c(=0)[nH]c2=0	1.8947	-1.0856	-44.31	0	0	1	4.74
d95	402.482 2	6	C19H18N2O4S2	2.891	0=c2[nH]c(=0)n(COCCO)c(Sc1ccccc1)c2Sc3ccccc3	1.5547	-0.9164	-66.97	0	0	1	4.68
d94	413.447 3	8	C20H19N3O58	2.004	0=C(Nc1ccccc1)c3c(8c2ccccc2)n(COCCO)c(=0)[nH]c3=0	1.8096	-1.084	-99.11	0	0	1	4.74
d93	352.361 2	8	C15H16N2O6S	1.276	COC(=0)c2c(Sc1ccccc1)n(COCCO)c(=0)[nH]c2=0	1.6067	-1.0866	-177.38	1	0	1	5.18
d92	351.376 4	8	C15H17N3O58	0.087	Cc2c(8c1cccc(C(N)=0)c1)n(COCC0)c(=0)[nH]c2=0	1.6345	-0.9326	-142.88	1	27	1	3.51
<u>d91</u>	352.361 3	8	C15H16N2O6S	1.05	Cc2c(Sc1ccc(C(=0)0)cc1)n(C0CC0)c(=0)[nH]c2=0	1.7677	-1.1281	-193.97	1	27	1	3.45
d90	350,389 2	7	C16H18N2O5S	1.282	CC(=0)c2ccc(Sc1c(C)c(=0)[nH]c(=0)n1C0CC0)cc2	1.6622	-1.1213	-140.23	1	64	1	3.96
<u>d9</u>	342.797 2	6	C14CIH15N2O4S	2.059	Cc2c(Sc1cccc(Cl)c1)n(COCCO)c(=0)[nH]c2=0	1.6239	-1.0905	-111.42	1	27	1	4.89
d89	338.378 2	7	C15H18N2O5S	1.377	C0c2ccc(Sc1c(C)c(=0)[nH]c(=0)n1C0CC0)cc2	1.6824	-1.1077	-143.98	1	64	1	3.6
d88	324.351 3	7	C14H16N2O5S	1.048	Cc2c(Sc1ccc(O)cc1)n(COCCO)c(=0)[nH]c2=0	1.6807	-1.1031	-148.42	1	64	1	3.56
d87	333.361 2	7	C15H15N3O48	0.918	Cc2c(Sc1ccc(C#N)cc1)n(COCCO)c(=0)[nH]c2=0	1.7283	-1.08	-76.67	1	64	1	3.6
d86	353.349 2	9	C14H15N3O6S	1.028	Cc2c(Sc1ccc(N(=0)=0)cc1)n(COCCO)c(=0)[nH]c2=0	1.7135	-1.5648	-104.8	1	64	1	3.72
d85	359.804 3	7	C14CIH15N2O48	1.256	Cc2c(Sc1ccc(Cl)cc1)n(COCCO)c(=0)[nH]c2=00	1.6179	-1.0692	-115.7	1	64	1	3.6
484	320 340 3	9	C14FH15N004S	0.508	Co2o/Sotooo/EVort W/COCCOW/-036HIb2-000	1.5366	_1.0717	_15/10	1	R/I	1	36


Local
Database 1

External Database 2


Data and Metadata Separated

Data Can be Streamed...



Support PMML Based Analytics


```
Decision Tree generated by WEKA
Options: -B 10 -W weka.classifiers.i48.J48 -- -C 0.25 -M 2
Regression by discretization
Class attribute discretized into 10 values
Subclassifier: weka.classifiers.i48.J48
J48 pruned tree
NCSP3-R22 <= 1
 NS-R13 <= 27
  | H-Donors <= 2
      H-Acceptor <= 5
         Weight <= 248.299: '(-inf-3.962]' (2.0)
         Weight > 248.299
          LogP <= 2.687: '(5.498-6.01]' (6.0/1.0)
           LogP > 2.687
           | Hf <= -51.57: '(4.986-5.4981' (2.0)
        | | Hf > -51.57; '(5.498-6.01]' (2.0/1.0)
      H-Acceptor > 5
      | H-Acceptor <= 6
         | Weight <= 384.51
             LogP <= 1.734
                NCSP3-R22 <= 0: '(4.474-4.986]' (3.0/1.0)
                NCSP3-R22 > 0: '(4.986-5.498]' (3.0/1.0)
              LogP > 1.734
                Weight <= 338.378: '(5.498-6.01]' (6.0/2.0)
                Weight > 338.378
                | Weight <= 374.497; '(4.474-4.986]' (3.0)
           | | Weight > 374.497; '(3.962-4.474]' (3.0)
           Weight > 384.51
             LogP <= 2.461; '(4.986-5.498]' (4.0)
             LogP > 2.461
                LogP <= 3.781: '(4.474-4.986]' (2.0)
                LogP > 3.781: '(4.986-5.498]' (2.0/1.0)
```

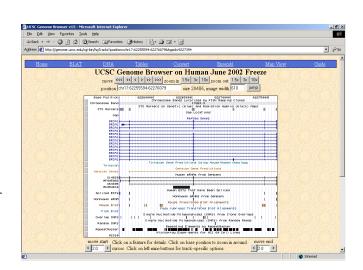
Integrate with Open Source Analytics

Go to OverLay Page

Part 3. Strategy for the Americas

It's the data.

1. Think Small, Medium and Large


- □ Large Science: high energy physics, astronomy, ...
- ☐ Medium science: sequencing an organism, biodiversity surveys, ...
- □ Small science: creating interesting bioinformatics databases and resources, overlaying external data over your data to do new science.

2. Open Data: Free & Controlled Biodata

- □ Lawrence Lessig of Stanford Law School has highlighted the battle between "free" and "controlled" web resources
- ☐ Genbank created a culture of free sequence data
- ☐ There is also a culture of proprietary data
- □ Consider part of your mission to create *open*data repositories

Open Source Projects

- □ Open Source libraries
 - Bioperl, Biojava, Biopython
- □ Open Source protocols
 - DWTP, DAS, MOBY, OmniGene, G2G,...
- □ Open Source end-user applications
 - Genquire, Generic Genome Browser, PyMol,Molecular DataSpace...

For More Information

- □ Data webs www.dataspaceweb.net
- □ Data web servers www.sourceforge.net/projects/dataspace
- □ Robert Grossman grossman @ uic.edu or rlg @ opendata.biz