Logistical Networking: Developments and Deployment

Micah Beck, Assoc. Prof. & Director

Logistical Computing & Internetworking (LoCI) Lab Computer Science Department University of Tennessee mbeck@cs.utk.edu AMPATH Astronomy WG, Miami Jan 31, 2003

Logistical Networking Research

- » University of Tennessee
 - Micah Beck
 - James S. Plank
 - Jack Dongarra
- >> University of California, Santa Barbara
 - Rich Wolski

» Funding

- Dept. of Energy SciDAC
- National Science Foundation ANIR
- UT Center for Info Technology Research

What is Logistical Networking

- » A scalable mechanism for deploying shared storage resources throughout the network
- » An general store-and-forward overlay networking infrastructure
- » A way to break long transfers into segments and employ heterogeneous network technologies
- » P2P storage and content delivery that doesn't using endpoint storage or bandwidth

Why "Logistical Networking"

- » Analogy to logistics in distribution of industrial and military personnel & materiel
- » Fast highways alone are not enough
 - Goods are also stored in warehouses for transfer or local distribution
- » Fast networks alone are not enough
 - Data must be stored in buffers/files for transfer or local distribution
- » Conventional vs logistical networking
 - Datagram routers make *spatial* choices
 - Storage depots enable *temporal* choices

The Network Storage Stack

- Our adaption of the network stack architecture for storage
- Like the IP Stack
- Each level encapsulates details from the lower levels, while still exposing details to higher levels

Applications		
Logistical File System		
Logistical Tools		
L-Bone	exNode	
IBP		
Local Access		
Physical		

IBP: The Internet Backplane Protocol

- » Storage provisioned on community "depots"
- » Very primitive service (similar to block service, but more sharable)
 - Goal is to be a common platform (exposed)
 - Also part of end-to-end design
- » Best effort service no heroic measures
 - Availability, reliability, security, performance
- » Allocations are time-limited!
 - Leases are respected, can be renewed
 - Permanent storage is to strong to share!

Models of Sharing: Logistical Networking

- » Moderately valuable resources
 - Storage, server cycles
- » Sharing enabled by relative plenty
- » Internet-like policies
 - Loose access control
 - No per-use accounting

- » Primary design goal: scalability
 - Application autonomy
 - Resource transparency
- » Burdens of scalability
 - The End-to-End Principles
 - Weak operation semantics
 - Vulnerability to Denial of Service

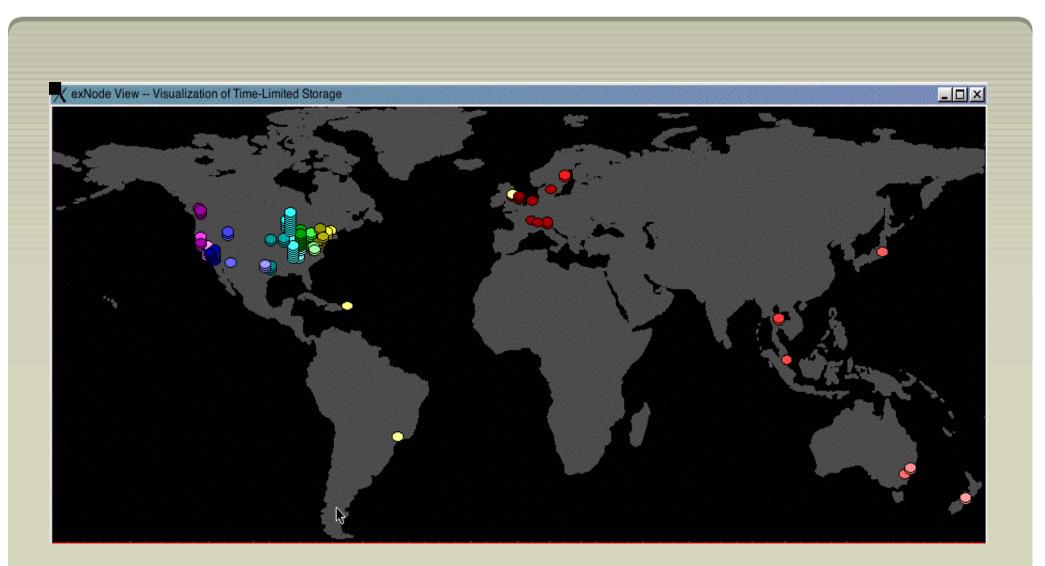
The Network Storage Stack

LoRS: The Logistical Runtime System: Aggregation tools and methodologies

The L-bone:TheResource DiscoveryA design of the second second

The exNode: A data structure for aggregation

<u>IBP</u>: Allocating and managing network storage (like a network malloc)


The Logistical Backbone (L-Bone)

- » LDAP-based storage resource discovery.
- » Query by capacity, network proximity, geographical proximity, stability, etc.
- » Periodic monitoring of depots.
- » 10 Terabytes of shared storage. (with plans to scale to a petabyte...)

L-Bone: January 2003

IBP Deployment

» Logistical Backbone

- 147 depots in 15 countries
- 10TB of shared storage
- » Leverages Planet Lab nodes (Intel Research Labs)
- » Depots/collaborations in AMPATH region
 - Puerto Rico (Guy Cormier, Univ. of Puerto Rico)
 - Brazil (Univ. of Sao Paolo)
- » AMPATH Chicago/FIU 1 GB link test
 - 75 Mb/s to a depot attached at 100Mb/s

AMPATH-StarLight 1Gbps Link

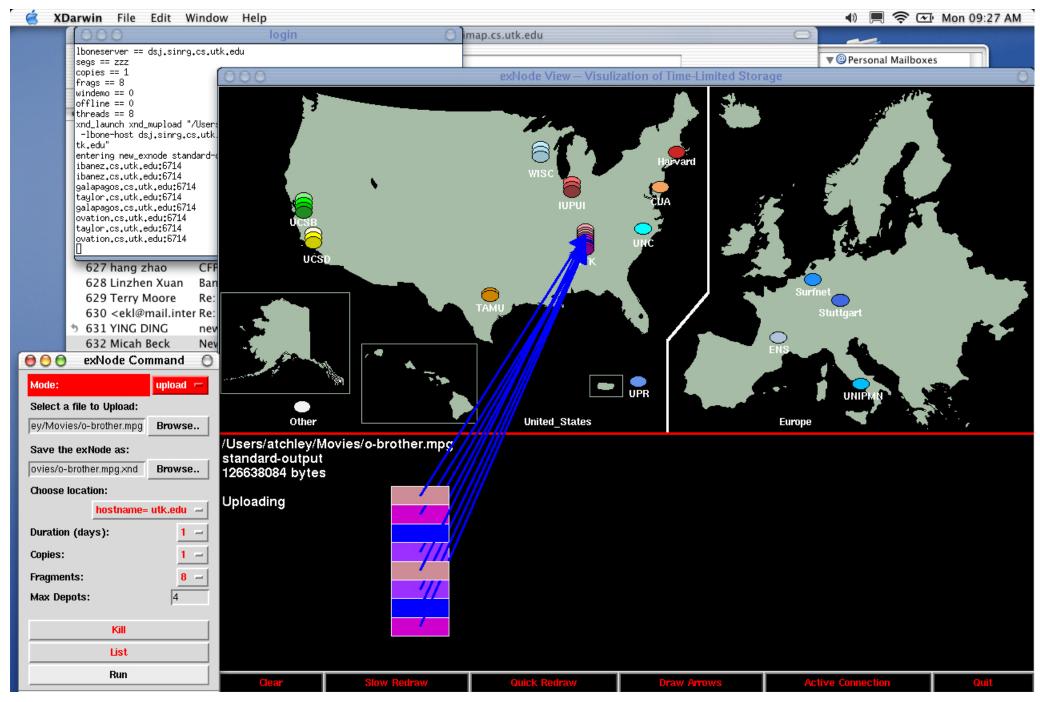
The Network Storage Stack

LoRS: The Logistical Runtime System: Aggregation tools and methodologies

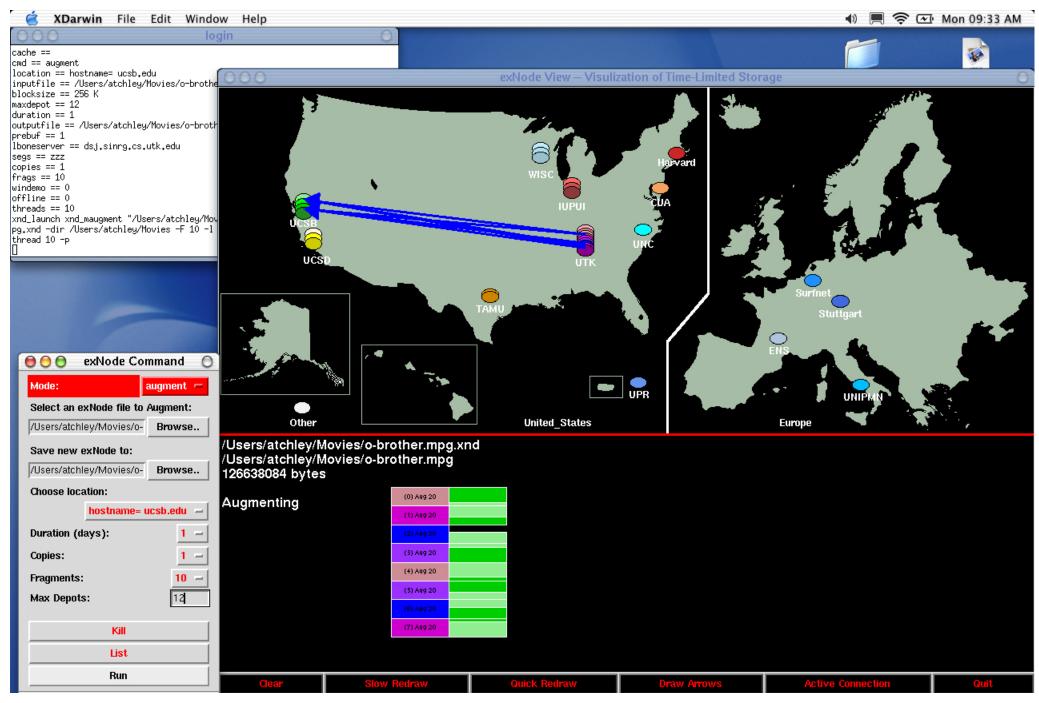
The L-bone:IResource DiscoveryA& Proximity queriesfeature

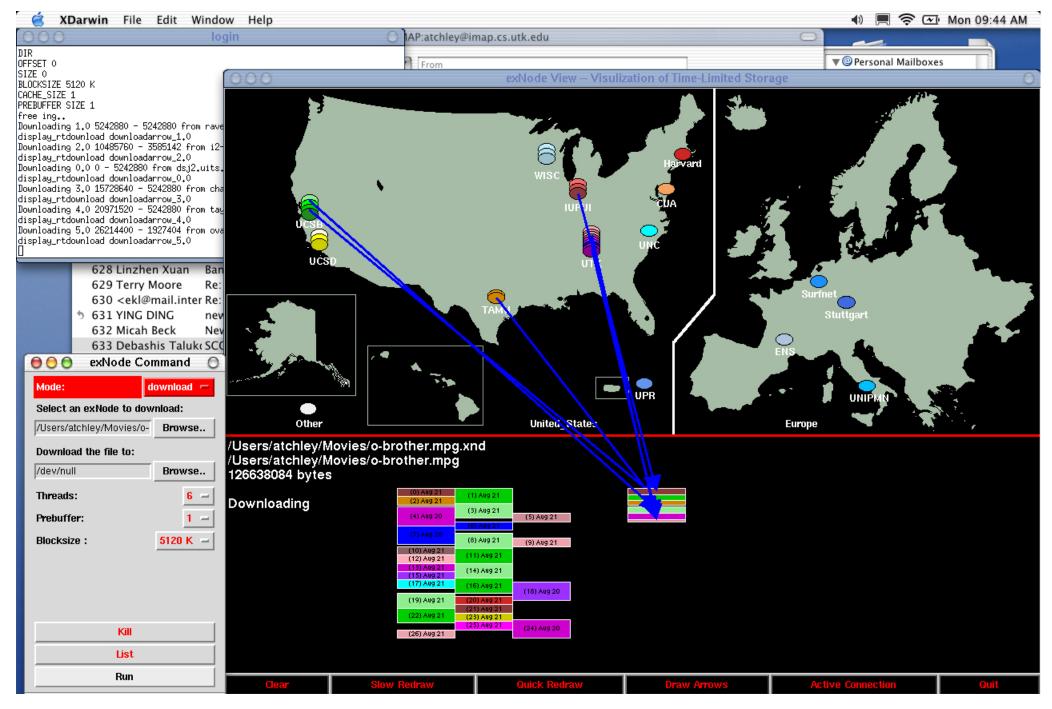
The exNode: A data structure for aggregation

<u>IBP</u>: Allocating and managing network storage (like a network malloc)


Logistical Runtime System

» Basic Primitives:


- Upload, Download, Augment, Refresh
- » End-to-end Services
 - Checksums, Encryption, Compression
- » Other Things We Can Do
 - Routing through an intermediate depot to reduce IP RTT, speeding up TCP transfers
 - Overlay multicast using either multiple TCP streams or IP multicast at tree nodes


Upload

Augment

Download

IBP Enables Data Intensive Collaboration

- » Large files can be uploaded to nearby depots, then managed by movement between depots
 - End systems are not involved in long distance transfers
- » Data can be moved near to distant collaborator without being downloaded into their end system
 - Direct access to collaborators private storage is not required
- » Depot-to-depot transfers can take advantage of multithreading, UDP transfer, Net/Web 100, other high-performance optimizations

Example Application: IBPvo

- » Web interface allows television shows to be recorded in U.S., uploaded to IBP depots
- » Resulting AVI files are O(1GB) in size
- » ExNode is delivered to user by mail
- » Multithreaded transfer to APAN region depots
- » Users watch programs by downloading to their own workstations, viewing locally
- » A reciprocal service would allow users in U.S. direct access to AMPATH region television
- » http://promise.sinrg.cs.utk.ed/votest

Other Areas of Application

- » Management of massive data sets
 - Produced by simulation
 - Captured from experimentation
 - Generated by sensors and instruments
- » Caching and staging of of data in highperformance wide are (e.g. Grid) computation
- » Content Distribution of highly popular content
- » Overlay routing, multicast
- » Digital Libraries
- » Checkpoints and backups
- » Wide area file systems

LoCI Lab Online http://loci.cs.utk.edu

- » IBP server and clients for Unix/Linux/OS X
 - Additional clients for Java, Win32
- » Logistical Runtime System libraries and tools
 - Run under Unix/Linux/OS X natively
 - Ported to Windows under Cygwin
 - Includes visualization (Tcl/tk)
 - Web interface
- » Logistical Backbone resource discovery server
 - Unix/Linux/OS X only
- » Publications, documentation, L-Bone status

