

Lessons learned from TeraGrid and I-WIRE Engineering and Evaluation

Tony Rimovsky NCSA

National Center for Supercomputing Applications

Lessons Learned

Three major lessons

- Be prepared to drop old ideas
- Keep the goals in mind. Keep asking what the goals are.
- Lean on experience

Extensible TeraGrid Overview

~23 Teraflop distributed cluster

- NCSA, Caltech, SDSC, ANL under TeraGrid
- Added PSC under ETF

Fastest research network in the US.

- 40 Gigabit/s (4xOC-192c) Chicago <-> LA
- 30 Gigabit/s to each site
- Using both CENIC and I-WIRE regional optical networks

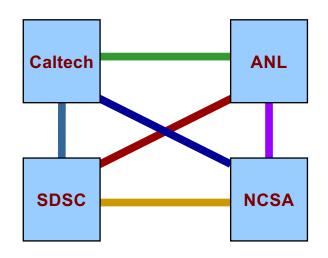
Be prepared to drop old ideas

Original TeraGrid network concept was fullmesh, point-to point 10Gigabit Ethernet connectivity using Ethernet switches between 4 sites.

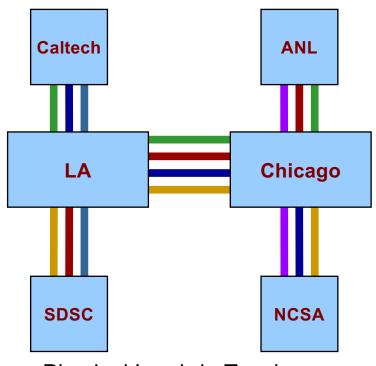
Key Points:

- Qwest provided OC-192c lambdas
- I-WIRE and CENIC were both evaluating optical designs
- TeraGrid networkers involved in both I-WIRE and CENIC engineering

Technical Evaluation


Several problems were discovered:

- SONET vs Ethernet industry preferences
 - Theoretically 10GigE could work over both LAN and OC-192
 - Ethernet vendors prioritized for LAN
 - SONET vendors prioritized for WAN
- 10GigE interfaces and switches didn't exist yet.
- Buffering in Ethernet switches was going to be an issue



(and keep checking the goals)

Original concept was 4 sites and cluster traffic as in a machine room, with dedicated links in fullmesh.

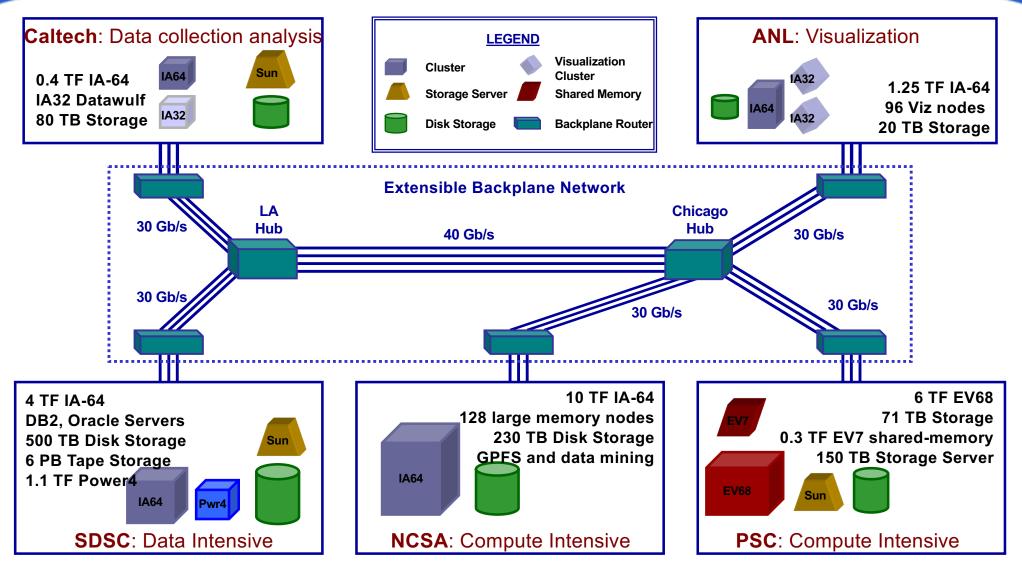
Logical Lambda Topology (Full Mesh)

Physical Lambda Topology

Goal Evolution

Priorities and goals developed over time

- Desire to maximize bandwidth usability among sites
- The network is not the research/risk area for ETF
- Suddenly needed to scale to more sites


As a result

- IP core put in place over the lambda topology
- Still able to experiment technology like SANs over lambdas and over IP
- PSC was added with minimal additional networking cost

Extensible TeraGrid Facility (ETF)

Proposed, 2002, Operational in 2003

I-WIRE Note

Evolution also affected I-WIRE development. We kept finding new or better fiber deals

- Changed the topology, which changed the engineering/design.
- Fiber was driving the design and the priorities for a while.
- This was both good...

We found opportunities we originally didn't know existed

... and bad

Design team had to keep starting over

Lean on Experience

We brought in other people for I-WIRE and TeraGrid hardware evaluations

Valuable for several reasons

- In the I-WIRE case, we brought in people who had operational experience with optical nets.
- With TeraGrid, we had the routing people from four major sites involved, and asked for input on questions to ask from other teams.

Value of Experience

• Experience with specific vendors

A lot of promises get made at the leading edge. Reputation and experience mean a lot.

Experience with technology

Having people with optical experience on the I-WIRE evaluation team helped tremendously.

• Experience with evaluating proposals Learned better ways to evaluate technical

proposals.

Questions? Teragrid: networking-wg@teragrid.org I-WIRE: iwire-eng@mcs.anl.gov Tony Rimovsky: tony@ncsa.edu

Conclusion

