Radio Astronomy in the AMPATH Service Area

T. H. Troland

Physics & Astronomy Department University of Kentucky Lexington, KY USA

Valdivia, April 12, 2002

Arecibo Observatory (NAIC)

- Located near Arecibo, Puerto Rico
- Fixed spherical dish pointing straight up
- Movable transmitters & receivers suspended above dish

The Arecibo Telescope

Dish - 305 m diameter (world's largest)

 Surface – Aluminum panels, 300,000 kg, suspended above the ground on cables

The Arecibo Telescope

 Triangular platform – 800,000 kg, suspended 140 m above the dish

 Azimuth arm - Rotates to track celestial objects, 93 m long

Arecibo Observatory – Popular Interest

- A popular site for movie makers (Contact, Golden Eye)
- An increasingly popular site for visitors (now 125,000 per year)

Science at Arecibo

Radio Astronomy – Passive reception of cosmic radio radiation

 Radar Astronomy – Radar studies of Solar System objects

 Atmospheric Studies – Radar studies of Earth's ionosphere

Connectivity at Arecibo - History

Internet 0 – 56 Kbs up until 1999

Internet 1 – T1 line (1.5 Mbs) from Puerto Rican Telephone Company

Connectivity at Arecibo – Present & Future – Internet 2

I2 connection established November, 2001

OC-3 line (155 Mbs) to University of Puerto Rico
DS-3 line (45 Mbs) to mainland (FIU – AMPATH)

Connectivity at Arecibo - Needs

Remote Observing – Observing programs often of long-duration, visiting scientists cannot always be on site for data taking.

Connectivity at Arecibo - Needs

- Remote data analysis Visiting scientists often need to run Arecibo data analysis software remotely from their home institutions.
- Data export Visiting scientists often need to export large data sets to their home institutions.

Connectivity at Arecibo – Future Challenges

 New (and planned) instrumentation – Will dramatically increase data taking rate.

 New data analysis packages – Will require better connectivity for remote operation.

Connectivity at Arecibo – Future Challenges

 Virtual Control Room – Will require highspeed and very reliable connectivity to scientists' home institutions.

A Current Project at Arecibo (T. Troland *et al.*)

- Radio astronomy Study of radio radiation from interstellar clouds (λ 18 & 21 cm)
- Goal is to estimate magnetic field strengths in clouds & magnetic effects upon star-formation
- Collaborators R. Crutcher (University of Illinois), C. Heiles (Berkeley)

A Tour of Arecibo – Up to the Platform

A Tour of Arecibo – Under the Dish

The View from the Control Room

Radio Astronomy – The Future

- Atacama Large Millimeter Array (ALMA)
- At least 64 antennas, 12 m diameter
- Llano de Chajnantor, Chile (5000m)
- Completion about 2010
- Massive connectivity issues

