
Running Thor over MyGrid

Walfredo Cirne
Universidade Federal de Campina Grande

Thor

• Thor is a Molecular Modelling package
• It simulates the molecular movement of

atoms and molecules
• It determines the lower energy configuration

of the system
• It was developed at UFRJ (Paulo Bisch´s

team)

Fighting AIDS with Thor

• HIV virus mutates at a fast pace
• Regional variants are emerging
• We would like to better understand the

drugs effect on the Brazilian HIV variant
• We need to run a Thor parameter sweep,

varing the HIV variant and the inhibitor
– Thor is used to simulate the inhibitor/protease

interaction

Bag-of-Tasks Applications

• Parallel applications whose tasks are
independent
– Data mining
– Massive search (as search for crypto keys)
– Parameter sweeps
– Monte Carlo simulations
– Fractals (such as Mandelbrot)
– Image manipulation (such as tomography)
– And many others…

The Motivation for MyGrid

• Users of loosely-coupled applications could
benefit from the Grid now

• However, they don´t run on the Grid today
because the Grid Infrastructure is not widely
deployed

• What if we build a solution that does not
depend upon installed Grid infrastructure?

MyGrid Scope

• MyGrid allows a user to run Bag-of-Tasks
parallel applications on whatever resources
she has access to

• Bag-of-Tasks applications are those parallel
applications formed by independent tasks

• One’s grid is all resources one has access to
– No grid infrastructure software is necessary
– Grid infrastructure software can be used

(whenever available)

What is MyGrid?

• MyGrid is a framework to build and run BoT
applications on user-defined grids

• The user provides:
– A description of her Grid
– A way to do remote execution and file transfer
– “The application”

• MyGrid provides:
– Grid abstractions
– Scheduling

Simple MyGrid Example

initial
mg-services mirror $PROC tarefa
mg-services put $PROC ENTRADA.$TASK $PLAYPEN

grid
tarefa < ENTRADA.$TASK > SAÍDA

final
mg-services get $PROC $PLAYPEN/SAÍDA

resultados/SAÍDA.$TASK

Defining My Personal Grid
proc:

name = ostra.lsd.ufcg.edu.br
attributes = lsd, linux
type = user_agent

proc:
name = memba.ucsd.edu
attributes = lsd, solaris
type = grid_script
rem_exec = ssh %machine%command
copy_to = scp %localdir/%file %machine:%remotedir
copy_from = scp %machine:%remotedir/%file %localdir

[...]

Factoring with MyGrid

• Fatora n generates files tasks, init, gridi,
and collect, and then invokes mg-addtask
tasks

• tasks
task:
init= init
grid= grid1
final= collect
task:
init= init
grid= grid2
…

Factoring with MyGrid

• init
mg-services put $PROC ./Fat.class $PLAYPEN

• grid1
java Fat 3 18655 34789789798 output-$TASK

• grid2
java Fat 18655 37307 34789789798 output-$TASK

• collect
mg-services get $PROC $PLAYPEN/output-$TASK results

Making MyGrid Encompassing
Home

Machine

Scheduler

Grid Machine Interface

Globus
Proxy

UA
Proxy

Grid
Script

...

Grid Machine

Globus
GRAM

Grid Machine

User
Agent

Grid Machine

...

Dealing with Firewalls, Private
IPs, and Space-Shared Machines

Scheduler (Home Mac.)

User Agent

Grid Script

Globus Proxy

Grid Machine Gateway

Space-Shared Gateway

The Scheduling Challenge

• Grid scheduling typically depends on information
about the grid (e.g. machine speed and load) and
the application (e.g. task size)

• However, getting grid information makes it harder
to build an encompassing system
– The Grid Machine Interface would have to be richer, and

thus harder to implement
• Moreover, getting application information makes

the system harder to use and less simple
– The user would have to provide task size estimates

Scheduling With No Information

• Work-queue with Replication
– Tasks are sent to idle processors
– When there are no more tasks, running tasks

are replicated on idle processors
– The first replica to finish is the official execution
– Other replicas are cancelled
– Replication may have a limit

• The key is to avoid having the job waiting for
a task that runs in a slow/loaded machine

Application Granularity

Grid Heterogeneity

Application Granularity

Proof of Concept

• During a 40-day period, we ran 600,000
simulations using 178 processors located in
6 different administrative domains widely
spread in the USA

• We only had GridScript and WorkQueue
• MyGrid took 16.7 days to run the

simulations
• My desktop machine would have taken 5.3

years to do so
• Speed-up is 115.8 for 178 processors

Fighting AIDS

• 55 machines in 6 administrative domains in
the US and Brazil
– The machines were accessed via User Agent,

UA + Grid Machine Gateway, UA + ssh tunnel,
and Grid Scripts

• Task = 3.3 MB input, 200 KB output, 4 to 33
minutes of dedicated execution

• Ran 60 tasks in 38 minutes
• Speed-up is 29.2 for 55 machines

– Considering an 18.5-minute average machine

Conclusions

• Bag-of-tasks parallel applications can
currently benefit from the Grid

• Running grid applications at the user-level is
a viable strategy
– However, firewalls, private IPs and the such

make it much harder than we initially thought
– Is “upperware” the way to go for new

middleware development?

Future Work

• Make MyGrid OGSA-complaint
• Create OurGrid, a community grid for

resource sharing
• Extend the scheduler for data intensive

applications
– Such a scheduler should try to minimize data

movement

