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Thor

• Thor is a Molecular Modelling package
• It simulates the molecular movement of 

atoms and molecules
• It determines the lower energy configuration 

of the system
• It was developed at UFRJ (Paulo Bisch´s 

team)



Fighting AIDS with Thor

• HIV virus mutates at a fast pace
• Regional variants are emerging
• We would like to better understand the 

drugs effect on the Brazilian HIV variant
• We need to run a Thor parameter sweep, 

varing the HIV variant and the inhibitor
– Thor is used to simulate the inhibitor/protease 

interaction 



Bag-of-Tasks Applications

• Parallel applications whose tasks are 
independent
– Data mining
– Massive search (as search for crypto keys)
– Parameter sweeps
– Monte Carlo simulations
– Fractals (such as Mandelbrot)
– Image manipulation (such as tomography)
– And many others…



The Motivation for MyGrid

• Users of loosely-coupled applications could 
benefit from the Grid now

• However, they don´t run on the Grid today 
because the Grid Infrastructure is not widely 
deployed

• What if we build a solution that does not 
depend upon installed Grid infrastructure?



MyGrid Scope

• MyGrid allows a user to run Bag-of-Tasks
parallel applications on whatever resources
she has access to

• Bag-of-Tasks applications are those parallel 
applications formed by independent tasks

• One’s grid is all resources one has access to
– No grid infrastructure software is necessary
– Grid infrastructure software can be used 

(whenever available)



What is MyGrid?

• MyGrid is a framework to build and run BoT 
applications on user-defined grids

• The user provides:
– A description of her Grid
– A way to do remote execution and file transfer
– “The application”

• MyGrid provides:
– Grid abstractions
– Scheduling



Simple MyGrid Example

# initial
mg-services  mirror  $PROC  tarefa
mg-services  put  $PROC  ENTRADA.$TASK  $PLAYPEN

# grid
tarefa  <  ENTRADA.$TASK  >  SAÍDA

# final
mg-services  get  $PROC  $PLAYPEN/SAÍDA  

resultados/SAÍDA.$TASK



Defining My Personal Grid
proc:

name = ostra.lsd.ufcg.edu.br 
attributes = lsd, linux 
type = user_agent 

proc:
name = memba.ucsd.edu
attributes = lsd, solaris
type = grid_script 
rem_exec = ssh %machine%command 
copy_to = scp %localdir/%file %machine:%remotedir 
copy_from = scp %machine:%remotedir/%file %localdir 

[...] 



Factoring with MyGrid

• Fatora n generates files tasks, init, gridi, 
and collect, and then invokes mg-addtask 
tasks

• tasks
task:
init= init
grid= grid1
final= collect
task:
init= init
grid= grid2
…



Factoring with MyGrid

• init
mg-services put $PROC ./Fat.class $PLAYPEN

• grid1
java Fat 3 18655 34789789798 output-$TASK

• grid2
java Fat 18655 37307 34789789798 output-$TASK

• collect
mg-services get $PROC $PLAYPEN/output-$TASK results
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Dealing with Firewalls, Private 
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The Scheduling Challenge

• Grid scheduling typically depends on information 
about the grid (e.g. machine speed and load) and 
the application (e.g. task size)

• However, getting grid information makes it harder 
to build an encompassing system
– The Grid Machine Interface would have to be richer, and 

thus harder to implement
• Moreover, getting application information makes 

the system harder to use and less simple
– The user would have to provide task size estimates



Scheduling With No Information

• Work-queue with Replication
– Tasks are sent to idle processors
– When there are no more tasks, running tasks 

are replicated on idle processors
– The first replica to finish is the official execution
– Other replicas are cancelled
– Replication may have a limit

• The key is to avoid having the job waiting for 
a task that runs in a slow/loaded machine



Application Granularity



Grid Heterogeneity 



Application Granularity



Proof of Concept

• During a 40-day period, we ran 600,000 
simulations using 178 processors located in 
6 different administrative domains widely 
spread in the USA

• We only had GridScript and WorkQueue
• MyGrid took 16.7 days to run the 

simulations
• My desktop machine would have taken 5.3 

years to do so
• Speed-up is 115.8 for 178 processors



Fighting AIDS

• 55 machines in 6 administrative domains in 
the US and Brazil
– The machines were accessed via User Agent, 

UA + Grid Machine Gateway, UA + ssh tunnel, 
and Grid Scripts 

• Task = 3.3 MB input, 200 KB output, 4 to 33 
minutes of dedicated execution

• Ran 60 tasks in 38 minutes
• Speed-up is 29.2 for 55 machines

– Considering an 18.5-minute average machine



Conclusions

• Bag-of-tasks parallel applications can 
currently benefit from the Grid 

• Running grid applications at the user-level is 
a viable strategy
– However, firewalls, private IPs and the such 

make it much harder than we initially thought
– Is “upperware” the way to go for new 

middleware development?



Future Work

• Make MyGrid OGSA-complaint
• Create OurGrid, a community grid for 

resource sharing
• Extend the scheduler for data intensive 

applications
– Such a scheduler should try to minimize data 

movement


