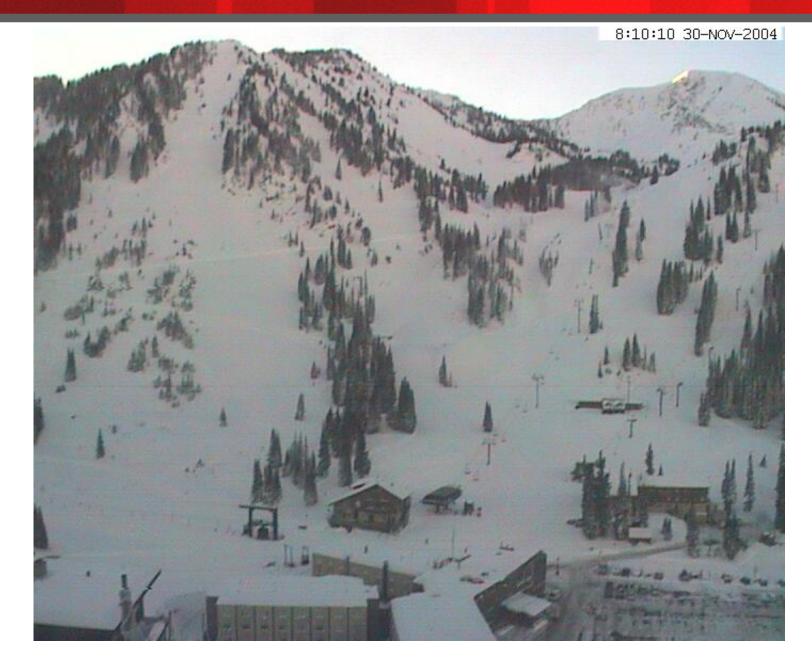
INTERNET.

Designing a New Networking Environment for U.S. Research & Education


Steve Corbató *corbato@internet2.edu* Director, Network Initiatives

CANS 2004 Florida International University Miami

30 November 2004

I come to Miami from a slightly different part of the country (Utah)

INTERNET.

One view of the U.S. landscape

- The packet network won, but now can it keep up?
 - Grid computing: a distinct view of the network as a *schedulable resource*
- The telecom/IP bust has created a 'once-in-alifetime' opportunity for previous non-players in facilities-based telecommunications
 - New R&E optical networking facilities are emerging on the regional and national scales
- Active investigation of new hybrid architectures is underway

Topics for today

- High performance packet infrastructure
 - Abilene Network
- Regional Optical Networks (RONs)
 - FiberCo case study
- Future architectures
 - New York City exchange point MAN LAN
 - Hybrid Optical & Packet Infrastructure HOPI

Abilene Network

30 November 2004

Abilene genera

Abilene Network – second generation

Abilene timeline

Apr 1998 Network announced

- Cisco Systems, Indiana Univ., Nortel Networks, and Qwest Communications initial partnership led by Internet2
- 2.5-Gbps national backbone (OC-48c SONET)

Jan 1999 Network went into production

Second generation network upgrade

- Oct 2001 Qwest MoU (DWDM+SONET) extension (5 years)
- Apr 2002 Routers from Juniper Networks added
- Dec 2003 10-Gbps upgrade complete
- Oct 2004 Transport agreement extended by one year

•Oct 2007 Transport MoU with Qwest ends

 The time frame for both next generation architecture finalization & decision on transport partner(s) is ~15 months from now – early spring 2006.

Abilene scale September 2004

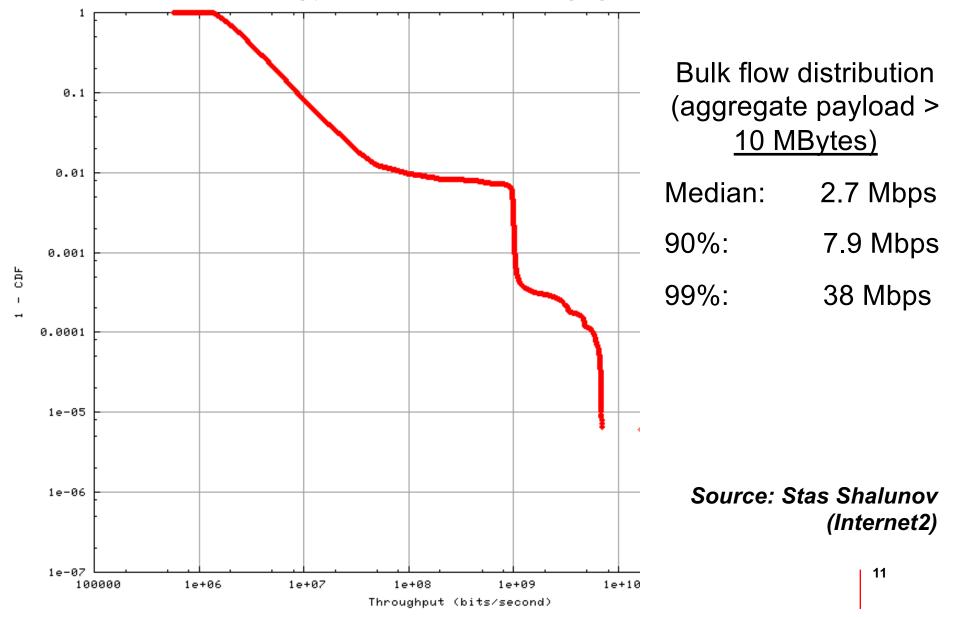
- IPv4/v6-over-DWDM (OC-192c) backbone
- •44 direct connections (OC-3c \rightarrow 10 GigE)
 - 2 (soon 3) 10-GigE connections (10 Gbps)
 - 6 OC-48c connections (2.5 Gbps)
 - 2 Gigabit Ethernet connections (1 Gbps)
 - 23 connections at OC-12c (622 Mbps) or higher
- 230+ participants research universities & labs
 - All 50 states, District of Columbia & Puerto Rico
- Expanded access
 - 113 sponsored participants
 - 34 state education networks

Abilene's distinguishing features

- Native advanced services multicast & IPv6
- Ability to support large individual flows
 - Regular, routine testing: hourly 980+ Mbps TCP flows
 - Supporting multiple Internet2 Land Speed Records
 - Latest multi-stream TCP flow: 6.6 Gbps
- Home for community's advanced Internet initiatives
 - Middleware, for example
- Cost recovery model

INTERNET.

- Pricing scales roughly logarithmically with bandwidth
- Aim to is to encourage utilization and experimentation
- Open measurement stance

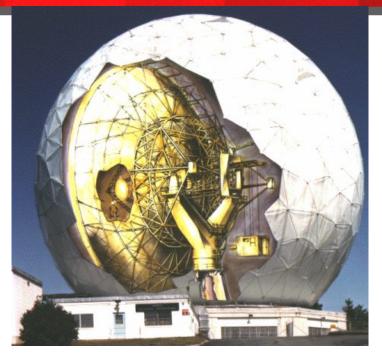

Abilene Observatory

- A project designed to support the computer science network research and advanced engineering communities
- Two components
 - In situ experimentation
 - Access to comprehensive set of network performance data
- Hosted Projects
 - PlanetLab (Berkeley/Princeton/Intel Research/NSF)
 - AMP Project (SDSC/NSF)
- Access to Network Performance data
 - Objective is to maintain time-correlated data archive
 - Multiple time-corrected data views traffic flows, passive measurements, routing data, SNMP and syslog data
- http://abilene.internet2.edu/observatory/

End-to-end performance: a persistent challenge

INTERNET.

Throughput Distribution of Bulk TCPs (log-log scal

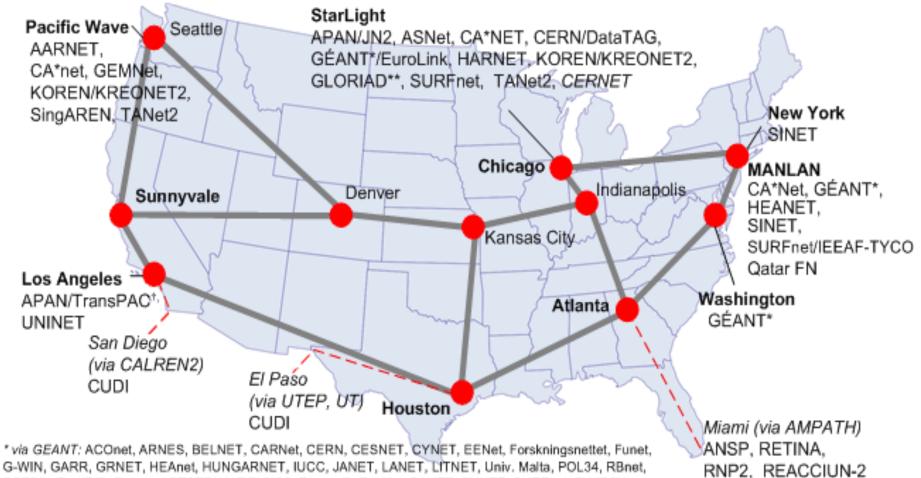


Very Long Baseline Interferometry (VLBI)

 Multiple antennae located at continental distance

INTERNET.

- Each antennae collects data from the sky at speeds of 1-10 Gbps
- Transmit all data dynamically over Abilene (previously recorded data to tape) to correlation facility
- Correlation facility must process information from all antennas in real time (several computational challenges involved here)



MIT Haystack Observatory

Source: Alan Whitney & David Lapsley (MIT/LL); Charles Yun (Internet2)

INTERNET.

Abilene International Peering

G-WIN, GARR, GRNET, HEAnet, HUNGARNET, IUCC, JANET, LANET, LITNET, Univ. Malta, POL34, RBnet, RCTS2, RedIRIS, Renater, RESTENA, REUNA2, Rhnet, RoEduNet, SANET, SUNET, SURFnet, SWITCH, ULAKBYM, UNINETT

¹ via APAN/TransPAC: WIDE/JGN, IMnet, CERNet/CSTnet/NSFCNET, KOREN/KREONET2, PREGINET, SingAREN, TANET2, ThaiSARN, WIDE (v6)

** via GLORIAD: CSTNET, RBnet

Regional Optical Networks (RONs)

30 November 2004

Underlying hypothesis

- The fundamental nature of regional networking is changing
 - The GigaPoP model based on provisioned, highcapacity services steadily is being replaced – on the metro and regional scales
- A model of facility-based networking built with owned assets – Regional Optical Networks (RONs) – has emerged
 - Notably, this change *increases* the importance of regional networks in the traditional *three-level hierarchy* of U.S. R&E advanced networking

INTERNET.

Distance scales for U.S. optical networking

	Distance scale (km)	Examples	Equipment
Metro	< 60	Univ. Wash (Sea), USC/ISI(LA), MAX(DC/MD/VA)	Dark fiber & end terminals
State/ Regional	< 500	I-WIRE (IL), I-LIGHT (IN), CENIC ONI	Add OO Amplifiers (or optical TDM)
Extended Regional/ National	> 500	TeraGrid 2 nd Gen Abilene, NLR	Add OEO regenerators & O&M \$'s

Leading & Emerging Regional Optical Networks

- Arkansas
- California (CALREN)
- Colorado (FRGP/BRAN)
- Connecticut (Conn. Education Network)
- Florida (Florida LambdaRail)
- Georgia (Southern Light Rail)
- Indiana (I-LIGHT)
- Illinois (I-WIRE)
- Louisiana (LONI)
- Maryland, D.C. & northern Virginia (MAX)
- Michigan (MiLR)
- Minnesota

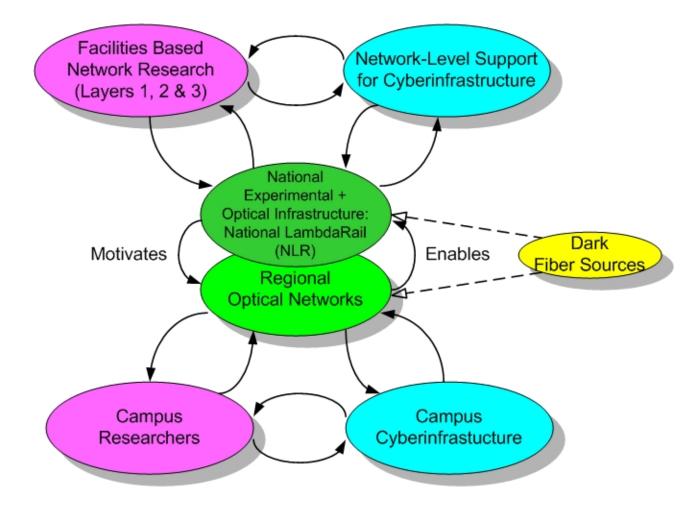
- Minnesota
- New England region (NEREN)
- New York (NYSERNet, Cornell)
- North Carolina (NC LambdaRail)
- Ohio (Third Frontier Network)
- Oklahoma (OneNet)
- Oregon
- Pacific Northwest (Lariat NIH BRIN, PNNL)
- Rhode Island (OSHEAN)
- SURA Crossroads (southeastern U.S.)
- Tennessee (ORNL, OneTN)
- Texas (LEARN)
- Virginia (MATP)
- Wyoming

- Dark fiber holding company
 - Operates on behalf of U.S. higher education and affiliates the Internet2 membership
 - Patterned on success of Quilt commodity Internet project
 - Assignment vehicle for the regionals and NLR
 - Fundamentally, a dark fiber market maker for R&E
- Project designed to support optical initiatives
 - Regional (RONs)
 - National (NLR)
- Not an operational entity
 - Does not light any of its fiber
- Concept was a spin-off from NLR governance discussions
 - Internet2 took responsibility for organizational formation
 - First acquisition of dark fiber through Level 3
 - 2,600 route miles (fiber bank) 3/2003

Dark fiber: gauging community-wide progress

INTERNET.

Aggregate dark fiber assets acquired by U.S. R&E optical initiatives (segment-miles)


•	CENIC (for CaIREN & NLR)	6,200
•	FiberCo (via Level 3 for NLR & RONs)	5,660
•	SURA (via AT&T)	6,000
	 Plus 2,000 route-miles for research 	
•	NLR Phase 2 (WilTel & Qwest)	4,000
•	OARnet	1,600
•	ORNL (via Qwest)	900
•	NEREN	670
•	Other projects (IN,IL,MI,OR,)	2,200+

Total (conservative estimate) 27,230+

- Over 55% of these assets are now outside NLR
- NLR will hold ~11,250 route-miles

National LambdaRail -Motivations

Source: Ron Johnson (U Washington) & Steve Corbató

Starting a RON ... in stages

- 1. Convene enthusiastic/visionary regional partners
- 2. Identify science and other research drivers
- 3. Assemble a technical working group
- 4. Develop governance & capital approaches and preliminary business plan
- 5. Study availability and procure dark fiber
- 6. Select and procure optronics kit
- 7. Refine business plan (i.e., λ pricing/cost-recovery model)
- 8. Focus on means to extend new capabilities to the researchers on campuses
- 9. Learn how to operate and maintain the system
- **10.** Install and commission plant
- **11.** At last, provision λ 's and other services!

Credit: Chris Buja (Cisco Systems) for his collaborative insights

21

Next steps for optical networking development

30 November 2004

Global Lambda Integrated Facility World Map – December 2004

Predicted international Research & Education Network bandwidth, to be made available for scheduled application and middleware research experiments by December 2004.

www.glif.is

Visualization courtesy of Bob Patterson, NCSA. In the near future, we will see a richer set of capabilities available to network designers and end users

HOPI Project - Summary

Core IP packet switched networks

INTERNET.

 A set of optically switched waves available for dynamic provisioning

Fundamental Question: How will the core Internet architecture evolve?

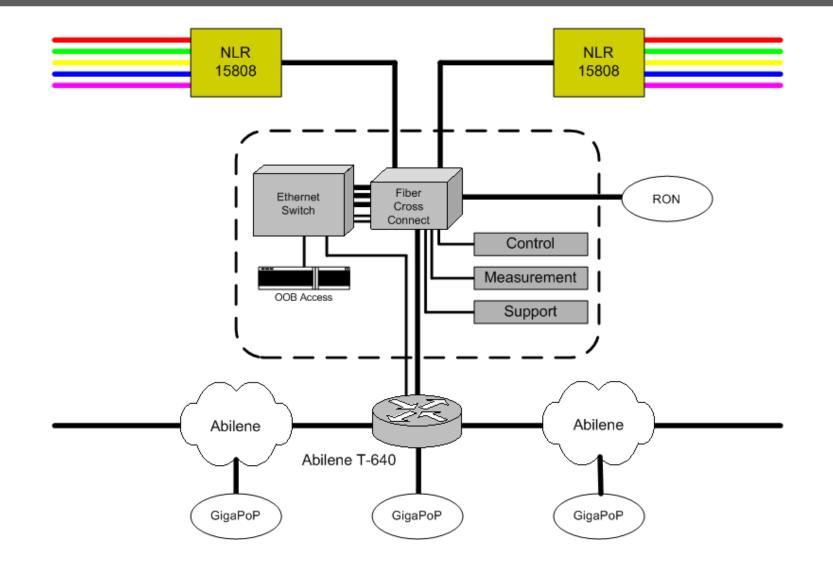
Examine a hybrid of shared IP packet switching and dynamically provisioned optical lambdas

 HOPI Project – Hybrid Optical and Packet Infrastructure

- A white paper describing a testbed to model the above infrastructure is posted http://hopi.internet2.edu
 - Implement testbed over the next year
 - Coordinate and experiment with other similar projects
- Design Team consisting of U.S. and international experiments

HOPI Resources

- The Abilene Network MPLS tunnels and the 10-Gbps packet switched network
- Internet2's 10-Gbps λ on the NLR national footprint
- MAN LAN experimental facility in New York
 - IEEAF(Tyco Telecom) 10-Gbps lambda between NYC -Amsterdam
- Collaboration with the Regional Optical Networks (RONs) and other related advanced efforts (GLIF, DRAGON, SURFNet, GEANT-2)


HOPI Project

Problems to understand

- Goal is to look at architecture
- Temporal degree of dynamic provisioning
- Temporal duration of dynamic paths and requirement for scheduling
- Topological extent of deterministic provisioning
- Examine backbone, RON, campus hierarchy how will a RON interface with the core network?
- Understand connectivity to other infrastructures for example, international or federal networks?
- Network operations, management and measurement across administrative domains?

HOPI Node

27

Manhattan Landing (MAN LAN) Exchange Point - NYC

30 November 2004

U.S. R&E exchange points

- Star Light (Chicago)
- Pacific Wave (Seattle & LA)
- AMPATH (Miami)
- NGIX-East (DC/College Park MD)
- NGIX-West (SF Bay Area)
- MAN LAN (New York City)
- Current trend is for geographically distributed exchange points on both coasts
 - Pacific Wave (Seattle-Bay Area-LA)
 - Atlantic Wave (New York-Washington DC-Atlanta-Miami)

Manhattan Landing

- MAN LAN originally conceived as a high performance exchange point to facilitate peering between US and International Research and Education Networks
 - Facilitate peering between federal and international networks
 - Original design was layer 2, an Ethernet switch.
- MAN LAN was formed through a partnership with Indiana University, NYSERNet, Internet2, and now IEEAF
 - Indiana University provides NOC and Engineering services
 - NYSERNet provides co-location, hands and eyes, and interconnection support
- Located in 32 Avenue of the Americas in New York City
 - Collocated in the NYSERNet facility adjacent to the fiber meet me room – cross-connects simple to facilitate
 - Many other carriers maintain presences in 32 AoA
 - NYSERNet has co-location space available

Production

INTERNET.

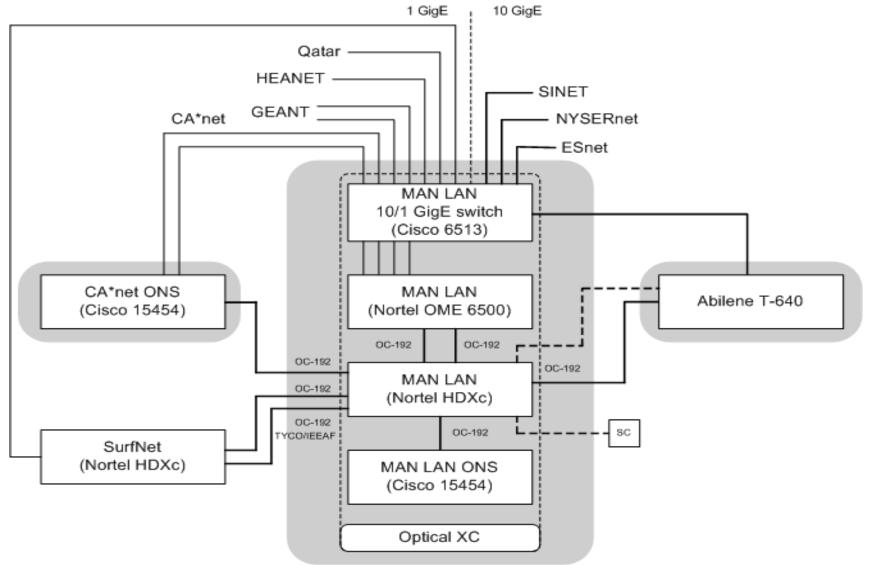
- Layer-2 interconnection/peering for IPv4 and IPv6
- Layer-1 optical interconnection
- Experimental facility
 - Layer-1 optical interconnection
 - -Partitioned from production service
 - –Adjacent to one of first five HOPI nodes (linking Abilene IP and I2's λ over NLR)

Addition of optical interconnection capabilities

- Layer-1 capabilities (production service and experimental facility) became operational in January 2004 using Cisco 15454 optical TDM
- Current interface configuration

INTERNET.

• 4 x 1 GigE, 2 x OC-48, 3 x OC-192


 Intent was to provide the NYC node for the Global Lambda Integration Facility (GLIF)

Plan developed at Reykjavik GLIF meeting – August 2003

- Also planned as part of a key node for the Internet2 HOPI project
- Currently, no additional costs are associated with MAN LAN layer-1 facilities

Upgraded configuration (November 2004)

INTERNET

INTERNET.

Conclusions

- Abilene Network supports most of U.S. higher ed's collaboration needs
 - Observatory showing demonstrable impact in research facilitation
 - Network utilization growing; network capable of large flows
 - Next generation architecture needed within 1.5 years
- NLR and the RONs are providing new options for U.S. advanced networking
 - RON development is a critical activity for research competitiveness
- HOPI and related projects are exploring a unified, hybrid architecture of packets and circuits for the near future

For more information...

http://abilene.internet2.edu

- http://abilene.internet2.edu/observatory
- http://ipv6.internet2.edu
- http://www.fiberco.org
- http://networks.internet2.edu/manlan
- http://hopi.internet2.edu
- http://www.glif.is

www.internet2.edu