The Atacama Large Millimeter Array (ALMA)

Bob Dickman, Coordinator Radio Astronomy Facilities Unit Division of Astronomical Sciences National Science Foundation

Latin America

- Substantial astronomy capital investment has recently been made or is planned in Latin America, *.e.g:*
 - <u>Chile</u>

•

- Gemini South
- VLT
- ALMA
- Very large (>>8m) optical telescope(s)
- <u>Mexico</u>
 - LMT
- <u>Argentina</u>
 - Auger
- Though all are unique, ALMA may serve as a useful paradigm for the challenges these projects can be expected to face.

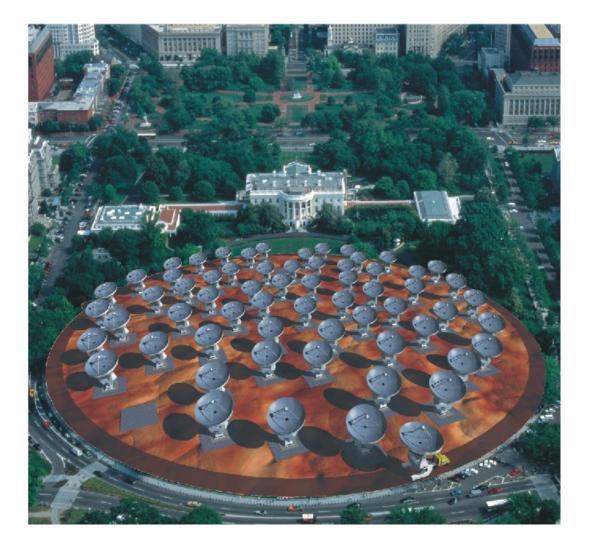
- ALMA is an <u>interferometer</u> that will operate in the mm and submm portions of the radio spectrum
- ALMA is an international project
- The lead US <u>agency</u> for ALMA is NSF
- The lead US <u>institution</u> for ALMA is the National Radio Astronomy Observatory (NRAO)
- NRAO is <u>managed</u> for NSF by Associated Universities, Inc. (AUI)
- AUI fulfills the role of US/NA legal interface with Chile
- ALMA will be <u>constructed</u> in northern Chile
- US ALMA construction was <u>initiated in FY2002</u>
- ALMA will <u>cost about \$800M</u> in current-year (*i.e.*, inflated) dollars

<u>Atacama Large Millimeter Array</u>

- Evolved out of U.S. Millimeter Array (MMA, 1984) and European LSA (1995) concepts
- U.S.-European Project (50%-50%)
- Northern Chile site
- Scope: 64 <u>12</u>m antennas, 4 receiver bands
- Costs (FY 2000 dollars):
 - > Total Cost: \$552M
 - > U.S. Share: \$276M (less \$20M CDN share)
 - > Operations: ~\$35M/yr
- 9-year construction timeline
- Japan may join

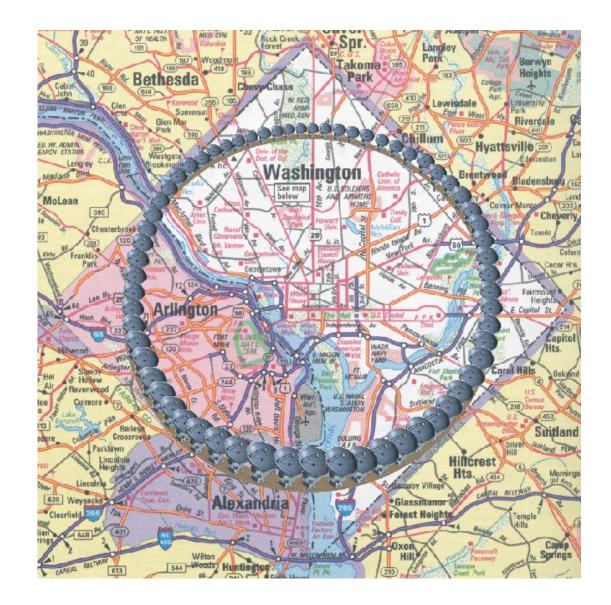
ALMA Science Requirements

- Detect CO emission from the Milky Way at z = 3 (Universe < ¼ present age, distance ~ 4.5 Gpc)
- Image 1 Solar-mass protoplanetary disks at 150pc
 - > Physical & kinematic structure (including tidal gaps)
 - > Chemical and isotopic composition
 - > Magnetic field structure
- Precision imaging at < 0.1 arcsecond resolution</p>


AMPATH 2003:ALMA

Why an Array?

- The angular resolution of a radio telescope improves as diameter increases
- There are physical limits to the size of a single antenna
- The multiple antennas of an array can be thought of as the <u>unfilled aperture</u> of a much bigger antenna
- Earth rotation fills in aperture during observation session
- The more antennas, the more sensitive the array will be and the quicker it will make images.


ALMA Baselines Are Variable: "Zoom Lens"

Maximum Detail At Largest Antenna Separations...

Why Millimeter-Waves?

- The interstellar medium is transparent to mm radiation: Star birth and star death are unveiled
- Spectral line observations provide:
 - > Gas motions -- collapse, turbulence
 - > Isotopic and elemental compositions and abundances
 - > Gas temperature
 - **Continuum observations provide:**
 - > Dust temperature
 - > Sites of star birth
 - > Opportunity to discover new planets around other stars

 The signals from distant objects were emitted when the Universe was younger – sensitive enough telescopes can observe the first generations of stars and galaxies

AMPATH 2003:ALMA

Scope Of Baseline ALMA

<u>64 12 meter antennas</u>

- 25 μ RMS surface accuracy (20 μ goal)
- 0.6 arcsec RMS pointing accuracy
- 15μ RMS phase error
- Performance in 9 m/s wind
- Transportable
- Five array configurations 250m – 14km diameter

4 dual-polarization receiver bands

- Band 3 (89 GHz 116 GHz)
- Band 6 (211 GHz 274 GHz)
- Band 7 (275 GHz 370 GHz)
- Band 9 (602 GHz 720 GHz)
- Frontend 4 K cryostat, can accommodate 10 receiver "cartridges"
- Fixed-tuned broadband multiplierdrivers for all bands

- Photonic LO Reference at ~100 GHz
- Fixed-tuned broadband multiplierdrivers for all bands
- 4 or 8 GHz IF bandwidth per polarization
- <u>120 Gbps</u> fiber optic transmission from each antenna
- Correlator
 - 64 antennas
 - 250 MHz 8 GHz BW per polarization
 - 64 4096 channels/product
 - 2 or 4 bit correlation format

Computing

- 6 MB/s sustained data rate (60 MB/s peak)
- Automated scheduling
- Pipeline data processing using AIPS++
- Networked archiving of all raw and associated calibration and derived data

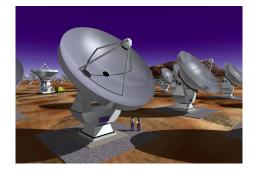
2003:ALMA

AMPATH

٠

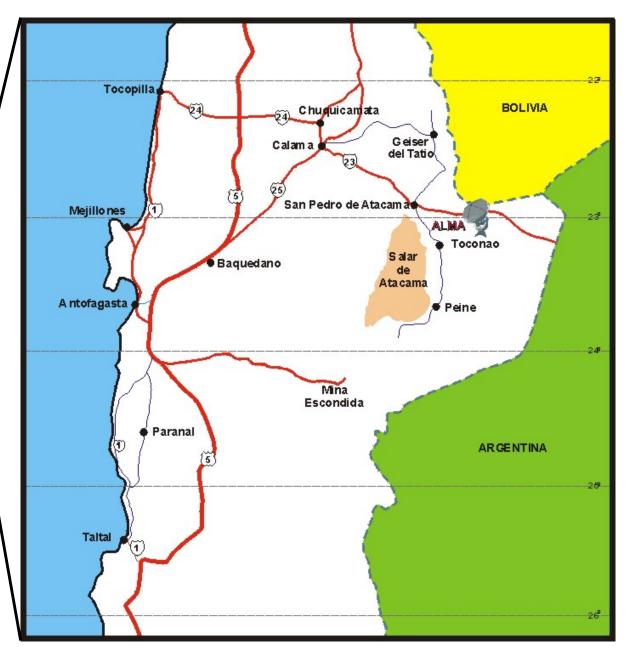
•

ALMA: An International Partnership


- An International Partnership was a deliverable of Phase I
- US/Canada:
 - > North American coalition
 - > \$20M (US)
- Europe
 - > Phase I: European coalition spearheaded by ESO
 - > Phase II: ESO
- Chile: Host Country
- Japanese participation:
 - > Perhaps after JFY2004
 - > Probably not equal partner

AMPATH 2003:ALMA

Partnership Status



- U.S.-European Phase I Project
 - > June 1999 September 2001 (US cost \$32M)
 - > "Confederated" parallel projects
- Congress initiated U.S. construction in FY 2002
 - > FY 2002: \$12.5M
 - > FY 2003: \$30M (proposed)
- ESO Council approved construction in 2002; 2003 start
 - > http://www.eso.org/projects/ALMA
- Baseline project will proceed as NA-ESO bilateral
 - > As host country, Chile has special privileged status
 - If Japan enters, she will contribute enhancements (off critical path), and capital buy-down
- Detailed Chile agreements will finalize in 2003

ALMA Site Location

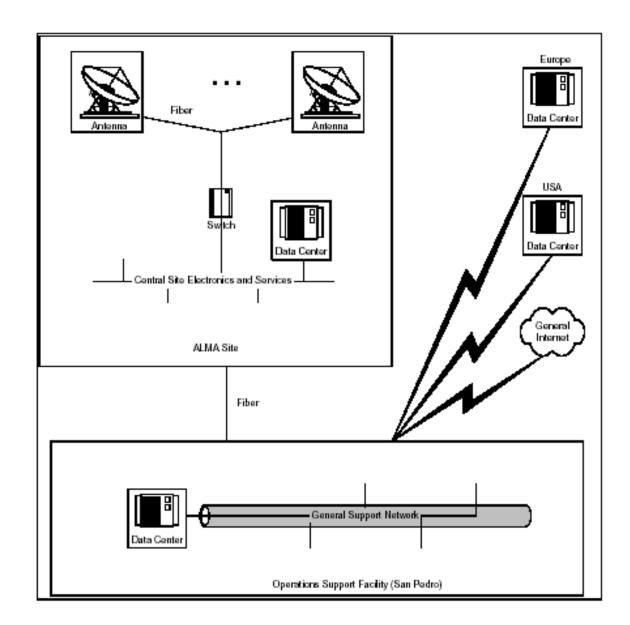
Array Site: Llano de Chajnantor

Chajnantor Environs

Operations Support Center Site

ALMA Costs

- "Bottom-up" approach to contingency
- ALMA Agreement minimizes exchange of funds
- Project denominated in deliverables
- Construction Cost: \$552.4M (FY 2000 dollars)
 - > Cost With Inflation: \$727M
 - > U.S. Share with inflation: \$344M
 - > U.S. Share will be reduced by Canada
 - > Cost based on detailed U.S.-European WBS
 - > Stable since developed
- Operating costs ~\$34M/yr (FY 2000 dollars)



ALMA Computing Challenges

- Usual Array Challenges (e.g., pipelining)
- High Speed (into archive)
 - > 60 MB/s specified; 72 MB/s goal, sustained peak rate
 - > 6 MB/s average
- Dynamical observation scheduling
 - > Frequencies
 - > Sources
- Remote observers
- General User Base
 - > No "black belt" in interferometry required
 - > Transparency and automated optimization
- Frequency terra incognita
 - > What else will be needed?

Physical Overview

ALMA Sites and Computing Functions

Array Operations Site (AOS)

- > Llano de Chajnantor (5050m altitude)
- > Correlator, with fiber to OSF
- > Antenna Monitor and Control

• Operations Support Facility (OSF)

- > 1 square km area, on access road 2/3 of way to Toconao, (2800m altitude)
- > Array operations
- > Quick-look data reduction
- > Data storage
- > Connection to web TBD

ALMA Santiago

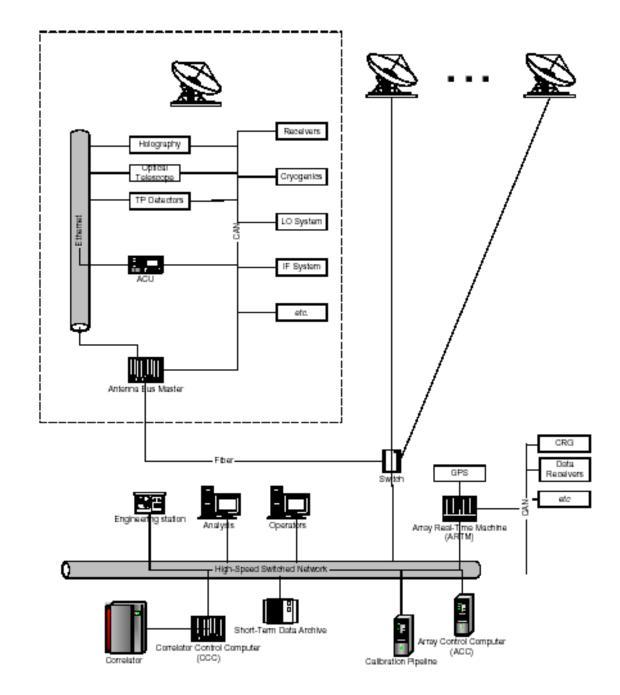
- > Location TBD
- > Standard pipeline reduction
- > Quality assessment
- > Archive production
- Regional Support Centers (U.S., Europe, Japan, Chile)
 - > Proposal handling
 - > User support and scheduling
 - > Archive hosting and archival research support

ALMA Computing Tasks

<u>User and Operator Tasks</u>

- > Array Monitor and Control (2-way) [O]
- > Signal transmission [O]
- > Signal correlation [O]
- > Calibration [O,U]
- > Imaging
 - Data reduction and calibration [U]
 - Quick-look [O,U]
 - Final [U]
- > Array queuing and scheduling [O]
- > Observation planning and observer support [U]

Some Final Considerations...


• Potential IT Bottleneck:

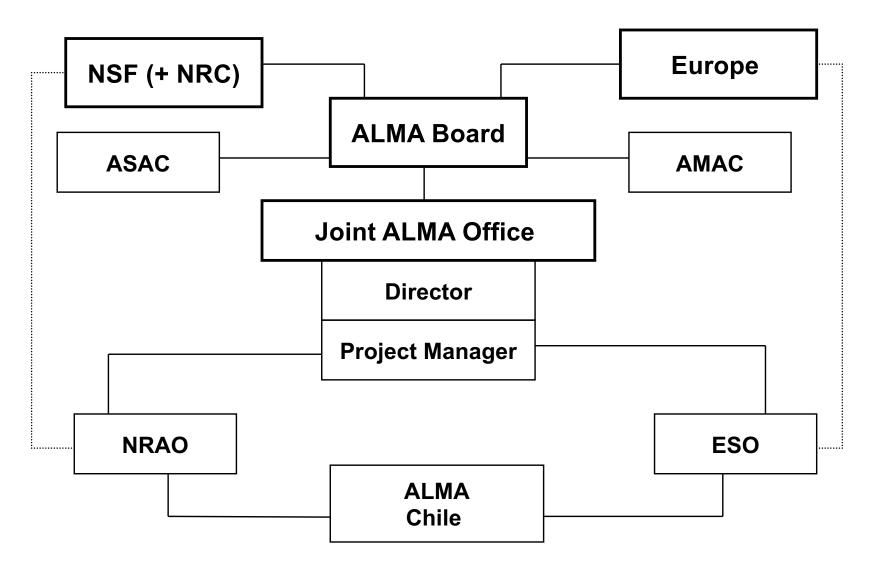
- > Physical: OSF to Chilean Backbone
- > Cost: connection
- International projects perhaps the wheel will turn
- <u>But</u> in astronomy, the international character of projects is unlikely to change:
 - > Small number of extraordinary sites
 - > Need for return on investment

Backup Material

ALMA Site Computer Layout

ALMA and Chile

• Chile provides:


- > Land no cash
- > Legal, privileged framework for Executives to operate ALMA
 - > Stable access to the ALMA site through an "onerous concession" (*i.e.*, rent)

• Chile receives:

- > 10% of observing time
- > Seat on ALMA Board for Chilean, scientific issues
- > Annual benefits to:
 - Chilean Astronomical Community
 - Indigenous Peoples
 - Chilean Public

ALMA Organization

AMPATH 2003:ALMA

ALMA Organization

- Structure defined by International ALMA Agreement
 - > Agreement is the core document: Chile and (possibly) Japan will join through supplementary documents
 - > Covers both construction and operations
 - > Agreement approved, waiting signature
- ALMA Organization:

Joint ALMA Board (4+4+1)

Joint ALMA project/observatory office

- Director
- Project Manager
- Project Scientist
- Project Engineer

Joint Management and Science Advisory committees

NSF retains external and internal advisory committees

